Category: Cognitive Disorders (non-PD)
Objective: The aim of this study is to determine the effect of leptin on pathogenesis
in patients with Alzheimer type Dementia and Mild Cognitive Impairment to reveal
the effects on memory and cognition and learning, and to use it as a biomarker for
disease follow-up.
Background: Leptin plays an active role in neuronal synaptic functions, glial maturation and hippocampal cell proliferation. Leptin slows down the amyloidogenic pathway, reduces beta secretase enzyme activity and tau phosphorylation (shown in figure 1) Recent studies show that leptin has positive effects on cognition and learning.Through this molecular neurobiological information, it is important to determine the clinical effects of leptin hormone in Alzheimer’s and MCİ patients.
Method: 23 Alzheimer type Dementia, 30 MCI patients who
admitted to the Dementia outpatient clinic and 27 healthy individuals whom
cognitive status were normal and who admitted to the Neurology outpatient clinic
were evaluated at our hospital. Detailed anamnesis of all participants was questioned and
neurological examinations were performed. MMSE (Mini Mental State Examination) was applied to determine
cognitive status. The presence of diabetes, psychosis and malignancy were excluded.
Blood collected from patients and healthy people were delivered to the biochemistry
laboratory . Leptin hormone levels were
determined by ELISA method.
Results: 25 healthy individuals, 27 MCI and 23 Alzheimer patients
were included in the study. All participants’ ages were over 60. 41 were female and 34 were male. Mini Mental
test was performed according to the educational status. 49 participants’ educational
level were under high school, 26 participants’ were high school and above. % 36 of
individuals had MCI, %21.3 had early stage and 9.3% had middle stage Alzheimers
disease. In the study, the mean leptin level was 10.18 ng / ml in the healthy group,
14.77 ng / ml in the MCI group and 10.22 ng / ml in the Alzheimer group (shown in figure 2).There was
no significant difference between Alzheimer and control group about mean leptin
level. MCI group leptin average was significantly higher than Alzheimer group leptin
average.
Conclusion: Investigating leptin levels in patients with Alzheimer and Mild
Cognitive Disorder is important. Understanding the role of leptin in
neurodegeneration and its relationship with learning and cognitif status may
contribute to the follow-up of the disease.
References: [1] İstanbul Üniversitesi İstanbul Tıp Fakültesi Nöroloji Anabilimdalı Öğretim Üyeleri, Nöroloji Ders Kitabı, A.Emre Öge, B.Baykan, S.Zarko Bahar, B.Bilgiç. [2] Emre M, Temel Nöroloji Kitabı, 1.Baskı. [3] Hauser SL, Josephson SA, Harrison Nöroloji, Nobel Tıp Kitabevi; 2009. [4] Braak ve Braak, 1991; de Toledo-Morrell, Goncharova, Dickerson, Wilson ve Bennett, 2000. [5] Qiu C, Kivipelto M, von Strauss E. Epidemiology of Alzheimer’s disease: occurrence, determinants, and strategies toward intervention.Dialogues Clin Neurosci 2009;11(2):111-28). [6] Annagür BB, Bozkurt Zincir S. Anoreksiya nervozada hormonal değişimler. Düşünen Adam Psikiyatri ve Nörolojik Bilimler Dergisi 2012; 25:63-69.. [7] Ferri CP, Prince M, Brayne C, Brodaty H, Fratiglioni L, Ganguli M, et al; Alzheimers Disease International. Global prevalence of dementia: a Delphi consensus study. Lancet 2005;366(9503):2112-7. [8] Brookmeyer R, Johnson E, Ziegler-Graham K,Alzheimers disease Alzheimers Dement 2007;3(3):186-91 5;366(9503):2112-7. [9] 4.World Health Organization. World atlas of ageing. Kobe, Japan: World Health Organization, Centre for Health Development,1998. [10] Gurvit H, Emre M, Tinaz S, Bilgic B, Hanagasi H, Sahin H, et al. The prevalence of dementiain an urban Turkish population. Am J Alzheimers Dis Other Demen 2008;23(1):67-76. [11] Thal DR, Rüb U, Orantes M, Braak H. Phases of A beta-deposition in the human brain and its relevance for the development of AD. Neurology 2002;58(12):1791–1800. [12] Frisoni GB, Boccardi M, Barkhof F, et al. Strategic roadmap for an early diagnosis of Alzheimer’s disease based on biomarkers. Lancet Neurol 2017;16(8):661–676. doi:10.1016/S1474- 4422(17)30159-X. [13] Mattsson N, Zetterberg H, Hansson O, Andreasen N, Parnetti L, Jonsson M, et al. CSF biomarkers and incipient Alzheimer disease in patients with mild cognitive impairment. JAMA 2009;302(4):385-93. [14] Alzheimer Disease Pathogenesis: Insights From Molecular and Cellular Biology Studies of Oligomeric Aβ and Tau Species. Xu-Qiao Chen* and William C. Mobley* Front Neurosci. 2019 Jun 21;13:659. [15] Oddo S, Caccamo A, Shepherd JD, Murphy MP,Golde TE, Kayed R, et al.Triple- transgenic model of Alzheimer’s disease with plaques and tangles: intracellular Abeta and synaptic dysfunction. Neuron 2003;39(3):409-21. [16] Weishaupt JH, Kussmaul L, Grötsch P, Heckel A, Rohde G, Romig H, Bähr M, et al. Inhibition of CDK5 is protective in necrotic and apopto-tic paradigms of neuronal cell death and prevents mitochondrial dysfunction. Mol Cell Neurosci 2003;24(2):489- 502. [17] Grundman M, Corey-Bloom J, Jernigan T,Archibald S, Thal LJ. Low body weight in Alzheimer’s disease is associated with mesial temporal cortex atrophy. Neurology 1996;46(6):1585-91. [18] Emre M, Gürvit H, Bilgiç B: Demanslar ve Zihinsel İşlevlerin Diğer Bozuklukları. In Emre M (ed): Nöroloji Temel Kitabı, 1.Baskı. İstanbul, 2012; 935-1033. [19] Arvanitakis Z, Wilson RS, Bienias JL, Evans DA, Bennett DA. Diabetes mellitus and risk of Alzheimer disease and decline in cognitive function. Arch Neurol 2004;61(5):661- 6. [20] Olsson B, Lautner R, Andreasson U, et al. CSF and blood biomarkers for the diagnosis of Alzheimer’s disease: a systematic review and meta-analysis. Lancet Neurol 2016;15(7):673–684. doi:10.1016/S1474-4422(16)00070-3.. [21] Mattsson N, Lönneborg A, Boccardi M, et al.; Geneva Task Force for the Roadmap of Alzheimer’s Biomarkers. Neurobiol Aging 2017;52:196–213. doi:10.1016/j.neurobiolaging.2016.02.034. [22] Bateman RJ, Xiong C, Benzinger TL, et al. Clinical and biomarker changes in dominantly inherited Alzheimer’s disease. N Engl J Med 2012; 367: 795–804. [23] Ringman JM, Coppola G, Elashoff D, et al. Cerebrospinal fluid biomarkers and proximity to diagnosis in preclinical familial Alzheimer’s disease. Dement Geriatr Cogn Disord 2012; 33: 1–5. [24] Villemagne VL, Doré V, Burnham SC, et al. Imaging tau and amyloid-β proteinopathies in Alzheimer disease and other conditions. Nat Rev Neurol 2018;14(4):225–236. doi:10.1038/nrneurol.2018.9.. [25] Ossenkoppele R, Jansen WJ, Rabinovici GD, et al. Prevalence of amyloid PET positivity in dementia syndromes: a meta-analysis. JAMA 2015;313(19): 1939–1949. doi:10.1001/jama.2015.4669. [26] Schneider JA, Arvanitakis Z, Bang W, Bennett DA. Mixed brain pathologies account for most dementia cases in community-dwelling older persons. Neurology 2007;69(24):2197-204. [27] McDonald RJ, Craig LA, Hong NS. The etiology of age-related dementia is more complicated than we think. Behav Brain Res 2010;214(1):3-11.. [28] Buee L, Hof PR, Delacourte A. Brain microvascular changes in Alzheimers disease and other dementias. Ann N Y Acad Sci 1997; 826:7-24.. [29] Suo ZM, Tan J, Placzek A, Crawford F, Fang CH, Mullan. Alzheimer’s β amyloid peptides induce inflammatory cascade in human vascular Cells the roles of cytokines and CD40 Brain Res 1998;807(1-2):110-7.. [30] Gao S, Hendrie HC, Hall KS. The relationships between age, sex and the incidence of dementia and Alzheimer’s disease. A metaanalysis. Arch Gen Psychiatry 1998;55(9):809-15. [31] McAdams C, Leonard BE. Neutrophil and monocyte phagocytosis in depressed patients. Prog Neuropsychopharmacol Biol Psychiatry 993;17(6):971-84. [32] Reitz C, Brayne C, Mayeux R. Epidemiyology of Alzheimer disease. Nat Rev Neurol 2011;7(3):137-52. [33] Havlik R, Plassman B, Gau B, Guralnik J, Helms M, Phillips C, et al. Early Life trauma as possible predictor of late life cognitive disability. Neurobiol Aging 1998; suppl 4:140. [34] Fratiglioni L, Paillard-Borg S, Winblad B. An active and socially integrated lifestyle in late life might protect against dementia. Lancet Neurol 2004;3(6):343-53. [35] Solfrizzi V, Colacicco AM, ;Introno A, Capurso C, Torres F, Rizzo C, et al. Dietary intake of unsaturated fatty acids and age-related cognitive decline: a 8.5-year follow- up of the Italian Longitudinal Study on Aging. NeurobiolAging 2006;27(11):1694-704. [36] Scarmeas N, Stern Y, Mayeux R, Manly JJ, Schupf N, Luchsinger JA. Mediterranean diet and mild cognitive impairment. Arch Neurol 2009;66(2):216-25. [37] Anstey KJ, Mack HA, Cherbuin N. Alcohol consumption as a risk factor for dementia and cognitive decline: meta-analysis of prospective studies. Am J Geriatr Psychiatry 2009; 17(7):542-55. [38] Engelhart MJ, Geerlings MI, Ruitenberg A, van Swieten JC, Hofman A, Witteman JC Breteler MM. Dietary intake of antioxidants and risk of Alzheimer disease. JAMA 2002;287(24):3223-9. [39] Fratiglioni L, Wang HX. Brain reserve hypothesis in dementia J Alzheimers Dis 2007;12(1):11-22. [40] Weintraub S, Wicklund AH, Salmon DP. The Neuropsychological Profile of Alzheimer Disease. Cold Spring Harb Perspect Med 2012; 2(4):006171. [41] Braak H, Braak E. Evolution of the neuropathology of Alzheimer’s disease. Acta Neurol Scand Suppl 1996; 165:3-12. [42] Öge AE, Baykan B, Bahar BZ. Sinir Sisteminin Dejeneratif Hastalıkları. Nöroloji. 2. Baskı. İstanbul: Nobel Tıp Kitabevleri; 2010. p. 443- 512.. [43] Öktem Ö, Klinik Nöropsikoloji Bakış Açısıyla. Karakaş S, ed.BİLNOT Bataryası El Kitabı Ankara: Dizayn Ofset; 2004. p. 115-6. [44] Steele C, Rovner B, Chase GA, Folstein M. Psychiatric symptoms and nursing home placement of patients with Alzheimer’s disease. Am J Psychiatry 1990;147(8):1049- 51. [45] Lopez OL, Zivkovic G, Smith G, Becker JT,Meltzer CC, DeKosky ST. Psychiatric symptoms associated with cortical-subcortical dysfunction in Alzheimer’s disease. J Neuropsychiatry Clin Neurosci 2001;13(1):56-60. [46] Knopman DS, DeKosky ST, Cummings JL, et al. Practice parameter: diagnosis of dementia Report of the Quality Standards Subcommittee of the AAN. Neurology 2001;56(9): 1143–1153. [47] Dubois, B., Feldman, H. H., Jacova, C., Hampel, H., Molinuevo, J. L., Blennow, K., … Cummings, J. L. (2014). Advancing research diagnostic criteria for Alzheimer’s disease: the IWG-2 criteria. The Lancet Neurology, 13(6), 614-629. [48] Folstein MF, Folstein SE, McHugh PR. Mini-Mental State: A practical method for grading the cognitive state of patients
for clinician. J Psychiatr Res, 1975; 12: 189-98. [49] Drago V, Babiloni C, Bartrés-Faz D, Caroli A, Bosch B, Hensch T, et al. Disease tracking markers for Alzheimers disease at the prodromal (MCI) stage. J Alzheimers Dis 2011;26 Suppl 3:159-99.. [50] Parnetti L, Chiasserini D. Role of CSF biomarkers in the diagnosis of prodromal Alzheimers disease. Biomark Med 2011;5(4): 479-84. [51] Mikio S. Biomarkers of the Dementia. Int J Alzheimers Dis. 2011; 2011: 564321. [52] Mosconi L, Sorbi S, de Leon MJ, Li Y, Nacmias B, Myoung PS, et al. Hypometabolism exceeds atrophy in presymptomatic early onset familial Alzheimers Disease J Nuci Med 2006 ;47(11)1778-86. [53] Meyer PT, Hellwig S, Amtage F, Rottenburger C, Sahm U, Reuland P, et al. Dual- biomarker imaging of regional cerebral amyloid load and neuronal activity in dementia with PET and 11C-labeled Pittsburgh com-pound B. J Nucl Med 2011;52(3):393-400. [54] Silverman DH, Small GW, Chang CY, et al. Positron emission tomography in evaluation of dementia: regional brain metabolism and long term outcome. JAMA 2001;286(17): 2120–2127. doi:10.1001/jama.286.17.2120. [55] Knopman DS, Jack CR Jr, Kramer JH, Boeve BF, Caselli RJ, Graff-Radford NR, et al. Brain and ventricular volumetric changes in frontotemporal lobar degeneration over 1 year. Neurology 2009;72(21):1843-9. [56] Atti AR, Palmer K, Volpato S, Winblad B, Ronchi DD, Fratiglioni L. Latelife body mass index and dementia incidence: nine-year follow-up da-ta from the Kungsholmen Project. J Am Geriatr Soc 2008;56: 111–6.. [57] Morris J. The clinical dementia rating (CDR): current version and scoring rules. Neurology. 1993;43(11):2412-4. [58] Morris JC. Clinical Dementia Rating: A reliable and valid diagnostic and staging measure for dementia of the Alzheimer type. International Psychogenatrics 1997; 9, Suppl 1, 173- 176. [59] Atri, A. (2019). The Alzheimer’s Disease Clinical Spectrum. Medical Clinics of North America, 103(2), 263–293. doi:10.1016/j.mcna.2018.10.009. [60] Albert MS, DeKosky ST, Dickson D, Dubois B, Feldman HH, The diagno-sis of mild cognitive impairment due to Alzheimer’s disease: recommendations from NIA-AA workgroups diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement.2011 May;7(3):270-279. [61] Frank AR, Petersen RC. Mild cognitive impairment. In: Duyckaerts C, Litvan I, eds. Handbook of Clinical Neurology. Vol. 89. Dementia. Edinburgh: Elsevier BV; 2009. p. 217-21. [62] Bell-McGinty S, Lopez OL, Meltzer CC, Scanlon JM, Whyte EM, Dekosky ST, et al. Differential cortical atrophy in subgroups of mild cognitive impairment. Arch Neurol 2005;62(9): 1393-7. [63] Tosun D, Schuff N, Truran-Sacrey D, Shaw LM, Trojanowski JQ, Aisen P, et al; Alzheimers Disease Neuroimaging Initiative. Relations between brain tissue loss, CSF biomarkers, ApoE genetic: a longitudinal MRI study. Neurobiol Aging 2010; 31(8):1340-5. [64] Ganguli M, Snitz BE, Saxton JA, Chang CH, Lee C, Vanderbilt J, et al. Outcomes of mild cognitive impairment by definition: A population study. Arch Neurol 2011;68(6):761- 7. [65] Late-onset Alzheimer Disease Gil D. Rabinovici, MD Dementia p. 14-33 February 2019, Vol.25, No.1. [66] Petersen RC. Mild cognitive impairment. Continuum. Dementia 2004; 10: 9-28. [67] Petersen RC, Smith GE, Waring SC, Ivnik RJ, Tangalos EG, Kokmen E. Mild cognitive impairment: clinical characterization and outcome. Arch Neurol 1999; 56(3): 303-8. [68] Roberts et al. The Mayo Clinic Study of Aging: Design and Sampling, Participation, Baseline Measures and Sample Characteristics. Neuro-epidemiology 2008; 30: 58–69. [69] Busse A, Hensel A, Guhne U, Angermeyer MC, Riedel Heller SG. Mild cognitive impairment: long term course of four clinical subtypes.Neurology 2006; 67(12): 2176-85. [70] Manly JJ, Tang MX, Schuph N, Stern Y. Frequency and course of mild cognitive impairment in a multiethnic community. Ann Neurol 2008; 63(4): 494-506.. [71] Alzheimers Association. 2012 Alzheimers disease facts and figures. Alzheimers Dement 2012;8(2):131-68. [72] Hansson O, Zetterberg H, Buchhave P, et al. Association between CSF biomarkers and incipient Alzheimer’s disease in patients with mild cognitive impairment: a follow-up study. Lancet Neurol 2006; 5(3):228-234. [73] Bondi MW, Edmonds EC, Salmon DP. Alzheimer’s disease: past, present, and future. J Int Neuropsychol Soc 2017;23(9–10):818–831. doi:10.1017/S135561771700100X. [74] Barrett-Connor E, Edelstein SL, Corey-Bloom J, Wiederholt WC: Weight loss precedes dementia in community-dwelling older adults. J Am Geriatr Soc 1996; 44:1147–1152. [75] McGregor, G., Harvey, J., Food for thought: Leptin regulation of hippocampal function and its role in Alzheimer's disease, Neuropharmacology (2017), doi: 10.1016/j.neuropharm.2017.09.038. [76] Houseknecht KL, Baile CA, Matteri RL, Spurlock ME. The Biology of Leptin: A Review. J Anim Sci 1998; 76: 1405-1420. [77] Sinha MK. Human leptin: the hormone of adipose tissue. Eur J Endocrinol 1997; 136:461-464. [78] Coşkun A. Yeme bozukluklarında moleküler mekanizmalar. Bilim ve Teknik 2012; 2:58-62. [79] Schwartz MW, Woods SC, Porte D Jr, Seeley RJ, Baskin DG. Central nervous system control of food intake. Nature 2000; 404:661–671. [80] Eckert ED, Pomeroy C, Raymond N, Kohler PF, Thuras P, Bowers CY. Leptin in anorexia nervosa. J Clin Endocrinol Metab 1998;83:791-795.. [81] The Relation of Circulating Levels of Leptin with Cognition in Patients with Alzheimer’s Disease, Ulker M Arch Neuropsychiatry 2018;55:211−214. [82] Kamohara S, Burcelin R, Halaas JL, Friedman JM, Charron MJ. Acu-te stimulation of glucose metabolism in mice by leptin treatment. Nature 1997; 389: 374-7.. [83] Shimabukuro M, Koyama K, Chen G, et al. Direct antidiabetic effect of leptin through triglyceride depletion of tissues. Proc Natl Acad Sci USA 1997; 94: 4637- 41. [84] Frühbeck G, Gomez-Ambrosi J, Muruzabal FJ, Burrel MA. The adipocyte: a model for integration of endocrine and metabolic signalling in energy metabolism regulation. Am J Physical Endocrine Metab 2001, 280: E827-E847. [85] Leptin dysfunction and Alzheimer’s disease: evidence from cellular, animal, and human studies Matthew J. McGuire and Makoto Ishii* Cell Mol Neurobiol. 2016 March; 36(2): 203–217. [86] S.J. Greco, A. Hamzelou, J.M. Johnston, M.A. Smith, J.W. Ashford, N. Tezapsidis, Leptin boosts cellular metabolism by activating AMPK the sirtuins to reduce tau phosphorylation and β-amyloid in neurons, Biochem. Biophys. Res. Commun. 14(2011):203-217. [87] The procognitive effects of leptin in the brain and their clinical implications G. Paz- Filho, M.-L. Wong, J. Licinio The İnternational Journal Of Clinical Practice. [88] Ve Hudetz JA, Gandhi SD, Iqbal Z, Patterso KM, Pagel PS. Elevated postoperative inflammatory biomarkers are associated with short- and medium-term cognitive dysfunction after coronary artery surgery. J Anesth 2011, 25:1–9. [89] Matochik J.A., London E.D., Yildiz B.O., et al: Effect of leptin replacement on brain structure in genetically leptin-deficient adults. J Clin Endocrinol Metab 2005; 90: pp. 2851-2854. [90] Within the central nervous system, leptin resistance arises from reduction of leptin receptors and impaired leptin signalling [Fadel JR, Joli-valt CG, Reagan LP. Food for thought: the role appetitive peptides in age-related cognitive decline; 12:764-76. [91] Obesity, age and oestrogen insufficiency have all been associated with central leptin resistance (Scarpace PJ, Matheny M, Shek EW. Impaired leptin signal transduction with age-related obesity. Neuropharmacology 2000; 39: 1872–9. [92] De Courten M, Zimmet P, Hodge A, Collins V, Nicolson M, Staten M, et al. Hiperleptinemia: the missing link in the metabolic syndrome?. Diabetic Med 1997; 14:200-208. [93] Solfrizzi V, Scafato E, Capurso C, D’Introno A, Colacicco AM, Fri-sardi V, et al. Metabolic syndrome and the risk of vascular dementia: the Italian longitudinal study on ageing. J Neurol Neurosurg Psychiatry 2010; 81: 433–40. [94] Examining the causal role of leptin in Alzheimer’s disease: AMendelian ran- domization study Matthew L. Romo*, C. Mary Schooling Neuroedocrinology. [95] [86] Holden KF, L
indquist K, Tylavsky FA, Rosano C, Harris TB, Yaffe K. Health ABC study. Serum leptin level and cognition in the elderly: findings from the Health ABC Study. Neurobiol Aging 2009; 30: 1483–9. [96] Warren MW, Hynan LS, Weiner MF. Leptin and cognition. Dement Geriatr Cogn Disord 2012; 33: 410–5. [97] Zeki Al Hazzouri A, Stone KL, Haan MN, Yaffe K. Leptin, mild cognitive impairment, and dementia among elderly women. J Gerontol A Biol Sci Med Sci 2013; 68: 175–80. [98] Johnston JM, Hu WT, Fardo DW et al. Alzheimer’s disease neuroimaging initiative. Low plasma leptin in cognitively impaired ADNI subjects: gender differences and diagnostic and therapeutic potential. Curr Alzheimer Res 2014; 11: 165–74.
To cite this abstract in AMA style:
İ. Tuncer, G. Yuksel, H. Ti̇reli̇. The Relationship Between Leptin Levels and Cognitive Status and Disease Stages in Patients with Alzheimer’s Disease [abstract]. Mov Disord. 2021; 36 (suppl 1). https://www.mdsabstracts.org/abstract/the-relationship-between-leptin-levels-and-cognitive-status-and-disease-stages-in-patients-with-alzheimers-disease/. Accessed November 24, 2024.« Back to MDS Virtual Congress 2021
MDS Abstracts - https://www.mdsabstracts.org/abstract/the-relationship-between-leptin-levels-and-cognitive-status-and-disease-stages-in-patients-with-alzheimers-disease/