Session Information
Date: Tuesday, September 24, 2019
Session Title: Drug-Induced Movement Disorders
Session Time: 1:45pm-3:15pm
Location: Agora 2 West, Level 2
Objective: We aimed to investigate the changes in oscillatory activity in the motor cortex (MCtx) and the sensorimotor cortex (SMCtx) of rats after acute injection of the dopamine (DA) receptor antagonist haloperidol (Halo) and subsequent injection of the DA receptor agonist apomorphine (APO).
Background: Oscillatory activity of local field potentials (LFPs) plays a central role in regulating different states of brain function. In neurological and neuropsychiatric disorders neuronal oscillations between subcortical basal ganglia (BG) and cortical circuits are altered.
Method: Six male Sprague Dawley rats (260-300g) were used in this study. Rats were anesthetized with chloral hydrate (370 mg/kg; i.p.) and a sixteen channel surface electrocortigram (ECoG) recording array was placed under the dura above the MCtx and SMCtx areas of one hemisphere. Five days after surgery, individual free moving rats were recorded for 30 min in three conditions: (1) basal activity, (2) after injection of Halo (0.5 mg/kg), and (3) with additional injection of APO (1mg/kg). Spontaneous basal oscillatory activity and average number of bursts were analyzed in the MCtx and SMCtx area.
Results: Injection of Halo decreased oscillatory theta band activity (4-8Hz) and enhanced beta (12-30Hz) and gamma (30-100Hz) in MCtx and SMCtx, which was compensated by APO (p <0.001). Further analysis showed a higher count of bursts in beta and gamma oscillatory activity after Halo in the MCtx and SMCtx. APO only compensated this measure for beta bursts in the SMCtx, while not affecting gamma burst count in both regions and beta burst count in the MCtx.
Conclusion: Our results provide evidence that blockade of dopamine predominantly elevates beta and gamma and suppresses low frequency theta oscillations in motor cortical areas. Further, our results propose that exaggerated beta and gamma frequency and higher number of bursts in the cortical networks may be involved in altered sensorimotor information processing in neurological and neuropsychiatric disorders.
To cite this abstract in AMA style:
M. Alam, T. Doll, J. Krauss, K. Schwabe. The dopamine receptor antagonist haloperidol enhances beta and gamma oscillations and bursts in the motor cortex [abstract]. Mov Disord. 2019; 34 (suppl 2). https://www.mdsabstracts.org/abstract/the-dopamine-receptor-antagonist-haloperidol-enhances-beta-and-gamma-oscillations-and-bursts-in-the-motor-cortex/. Accessed January 18, 2025.« Back to 2019 International Congress
MDS Abstracts - https://www.mdsabstracts.org/abstract/the-dopamine-receptor-antagonist-haloperidol-enhances-beta-and-gamma-oscillations-and-bursts-in-the-motor-cortex/