Category: Ataxia
Objective: Friedreich Ataxia (FRDA) is an inherited recessive disease with reduced frataxin levels. This causes a reduced mitochondrial function and progressive neurodegeneration. The aim of this study is to assess the role of Uric Acid (UA) in this phenomenon.
Background: UA is a scavenger of oxygen radicals, and, because of its the antioxidant capacity, may play a protective role in aging and neurodegeneration. Although hyperuricemia is associated with metabolic syndrome and stroke, higher serum UA levels have been linked to decreased risk for developing different neurodegenerative diseases. To date UA metabolism has not been studied in FRDA.
Method: We enrolled 56 FRDA (29 M/27 F) and 30 (16M/14F) healthy controls (HC) without history of cancer, haemolytic or pernicious anaemia, alcoholism, gout, heart, kidney, liver, and endocrine disease, uncontrolled hypertension, or being treated with diuretics. Disease severity was assessed using the Scale for the Assessment and Rating of Ataxia (SARA). Extensive evaluation of blood biochemical metabolites including UA was performed in all subjects at baseline and 12 months later.
Results: Mean age ± SD for FRDA patients was 35.8±14.2 years and 40.8±13.5 for HC, the mean age at onset was 19.3±9.7, and disease duration was 16.0± 9.0. Serum UA levels resulted significantly lower in FRDA subjects (4.0±1.7) than in HC (4.9±1.2; CI 95% -1.44, -0.31; p=0.010), more among women than men in both groups. There was not a significant difference between UA level at baseline and after 12 months (+0.25; p=0.175).
We found a correlation between UA levels and BMI (p<0.001), blood glucose (p=0.006), haemoglobin (p=0.001), disease duration (p=0.001), AST (p=0.002) and transferrin (p=0.002), but neither with disease severity and duration, nor GAA expansion. At the multivariate linear regression, independent predictors of UA changes were neutrophils (p=0.002), baseline UA (p<0.001), and serum lipids (p=0.004).
Conclusion: Our results suggest that decreased AU levels might be associated with neurodegeneration in FDRA. The lack of a correlation with disease severity and duration, and GAA expansion suggests that AU levels might be already decreased in the early stage of disease, even if we do not exclude a possible correlation on higher numbers of patients and HC.
References: [1] D. Marmolino, Friedreich’s ataxia: past, present and future. Brain Research reiews-2011 Jun 24; 67(1-2):311-30. [2] Michael H. Parkinson, Sylvia Boesch, Wolfgang Nachbauer, Caterina Mariotti and Paola Giunti, Clinical features of Friedreich’s ataxia: classical and atypical phenotypes. J. Neurochem. 2013. 126 (Suppl. 1), 103–117. [3] Geoffroy G, Barbeau A, Breton A, Lemieux B, Aube M, Leger C and Bouchard JB, Clinical description and roent genological evaluation of patients with Friedreich ataxia.1976. Can. J. Neurol. Sci. 3, 279–286. [4] Harding AE, Friedreich’s ataxia: a clinical and genetic study of 90 families with an analysis of early diagnostic criteria and intrafamilial clustering of clinical features. 1981. Brain 104, 589-620. [5] Campuzano V, Montermini L, Dolores Molto M. et al. Friedreich’s ataxia: autosomal recessive disease caused by an intronic GAA triplet repeat expansion. 1996. Science 271, 1423–1427. [6] Delatcycki MB, Williamson MB, Forrest SM, Friedreich ataxia: An overview. J Med Genet 2000; 37:1-8. [7] R.M. Clark, G. L. Dalgliesh, D. Endres, M. Gomez, J. Taylor, S. I. Bidichandani, Expansion of GAA triplet repeats in the human genome: unique origin of the FRDA mutation at the center of an Alu, Genomics 83(2004) 373–383. [8] C.A. Galea, A. Huq, P. J. Lockhart, G. Tai, L. A. Corben, E. M. Yiu, et al., Compound heterozygous FXN mutations and clinical outcome in Friedreich ataxia. Ann. Neurol. 79 (2016) 485–495. [9] Campuzano V, Montermini L, Lutz Y, et al, Frataxin is reduced in Friedreich ataxia patients and is associated with mitochondrial membranes. HumMol Genet 1997; 6:177180. [10] Timchenko LT, Caskey CT, Trinucleotide repeat disorders in humans: discussion of mechanisms and medical issues. FASEB 1996; 10:1589-97. [11] H. Koutnikova, V.Campuzano, F.Foury, P.Dolle, O.Cazzalini, M.Koenig, Studies of human, mouse and yeast homologues indicate a mitochondrial function for frataxin. Nat. Genet. 16 (1997) 345–351. [12] T.A.Rouault,Mammalian iron-sulphur proteins: novel insights into biogenesis and function. Nat. Rev. Mol. Cell. Biol. 16(2015) 45–55. [13] Radisky DC1, Babcock MC, Kaplan J,The yeast frataxin homologue mediates mitochondrial iron efflux. Evidence for a mitochondrial iron cycle. J Biol Chem. 1999 Feb 19; 274(8):4497-9. [14] Chen OS1, Crisp RJ, Valachovic M, Bard M, Winge DR, Kaplan J,Transcription of the yeast iron regulon does not respond directly to iron but rather to iron-sulfur cluster biosynthesis. J Biol Chem. 2004 Jul 9; 279(28):29513-8. [15] T.Yoon, J.A.Cowan, Frataxin-mediated iron delivery to ferrochelatase in the final step of heme biosynthesis. J Biol. Chem. 279 (2004) 25943–25946. [16] Schagerlof U, Elmlund H, Gakh O, Nordlund G, Hebert H, Lindahl M, Isaya G, Al-Karadaghi S, Structural basis of the iron storage function of frataxin from single-particle reconstruction of the iron-loaded oligomer. Biochemistry. 2008; 47:4948–4954. [17] Pastore C, M. Franzese, F. Sica, P. Temussi, A. Pastore, Understanding the binding properties of an unusual metal-binding protein – a study of bacterial frataxin. FEBSJ. 274 (2007) 4199–4210. [18] Koeppen A. Manto M, Pandolfo M, The neuropathology of inherited ataxias. The Cerebellum and its Disorders. New York, NY: Cambridge University Press; 2002:387-4. [19] M. Pandolfo, Friedreich Ataxia. Arch. Neurol. 2008. Oct;65(10):1296-30. [20] Ropper AH, Samuels MA, Adams and Victor’s Principles of Neurology. 9th edition, USA, The McGraw-Hill Companies, Inc., 2009. [21] Bhidayasiri R, Perlman SL, Pulst SM, Geschwind DH, Late-onset Friedreich ataxia: phenotypic analysis, magnetic resonance imaging findings, and review of the literature. Arch Neurol. 2005 Dec; 62(12):1865-9). [22] De Castro M, Cruz-Martínez A, Vílchez JJ, Sevilla T, Pineda M, Berciano J, Palau F, Early onset cerebellar ataxia and preservation of tendon reflexes: clinical phenotypes associated with GAA trinucleotide repeat expanded and non-expanded genotypes. J Peripher Nerv Syst.1999;4(1):58-62. [23] Coppola G, De Michele G, Cavalcanti F, Pianese L, Perretti A, Santoro L, Vita G, Toscano A, Amboni M, Grimaldi G, Salvatore E, Caruso G, Filla A, Why do some Friedreich’s ataxia patients retain tendon reflexes? A clinical, neurophysiological and molecular study. J Neurol. 1999 May; 246(5):353-7. [24] Richter A., Poirier J., Mercier J., Julien D., Morgan K., Roy M., Gosselin F., Bouchard J, Friedreich ataxia in Acadian families from Eastern Canada: clinical diversity with conserved haplotypes.Am. J. Med. Genet. 1996; 64, 594–601. [25] Lodi R, Hart PE, Rajagopolan B, et al, Antioxidant treatment improves in vivo cardiac and skeletal muscle bioenergetics in patients with Friedreich’s ataxia. Ann Neurol 2001; 49:590-6. [26] Lodi R, Rajagopolan B, Bradley JL, et al, ] Mitochondrial dysfunction in Fredreich’s ataxia: From pathogenesis to treatment perspectives. Free Radic Res 2002; 36:461-6. [27] Thomas Meier, Gunnar Buyse, Idebenone: an emerging therapy for Friedreich ataxia. J Neurol. 2009 Mar; 256 Suppl 1:25-30. [28] Buyse G, Mertens L, Di Salvo G, Matthijs I, Weidemann F, Eyskens B, Goossens W, Goemans N, Sutherland GR, Van Hove JL, Idebenone treatment in Friedreich’s ataxia: neurological, cardiac, and biochemical monitoring. Neurology. 2003 May 27; 60(10):1679-81. [29] Artuch R, Aracil A, Mas A, et al. 2002, Friedreich’s ataxia: idebenone treatment in early stage patients.Neuropediatrics 33, 190–193. [30] Boddaert N, Le Quan Sang K, Rötig A, et al. 2007, Selective iron chelation in Friedreich ataxia: biologic and clinical implications. Blood 110, 401–408. [31] Massimo Pandolfo and Laura Hausmann. J, Deferiprone for the treatment of Friedreich’s ataxia. Neurochem. 2013, 126 Suppl. 1, 142–146. [32] Rai M, Soragni E, Chou CJ, et al. 2010, Two new pimelic diphenylamide HDAC inhibitors induce sustained frataxin upregulation in cells from Friedreich’s ataxia patients and in a mouse model. PLoS One 21, 5–8825. [33] Acquaviva F, Castaldo I, Filla A, et al. 2008, Recombinant human erythropoietin increases frataxin protein expression without increasing mRNA expression. Cerebellum 7, 360–365. [34] Würstel Z, Puigserver P, Andersson U, et al. 1999, Mechanisms controlling mitochondrial biogenesis and respiration through the thermogenic coactivator PGC-1. Cell 98, 115–124. [35] Del Gaizo V, Payne R, 2003, A novel TAT-mitochondrial signal sequence fusion protein is processed, stays in mitochondria, and crosses the placenta. Mol. Ther. 7,720-730. [36]Roch-Ramel F, Guisan B. Renal Transport of Urate in Humans. News Physiol Sci. 1999; 14:80–84. [37]Alvarez-Lario B, Macarron-Vicente J, Uric acid and evolution. Rheumatology (Oxford) 2010; 49:2010–2015. [38] Maxwell SR, Thomason H, Sandler D, Leguen C, Baxter MA, Thorpe GH, Jones AF, Barnett AH. Antioxidant status in patients with uncomplicated insulin-dependent and non-insulin-dependent diabetes mellitus. Eur J Clin Invest. 1997; 27:484–490. [39] Sautin YY, Johnson RJ. Uric acid: the oxidant-antioxidant paradox. Nucleosides Nucleotides Nucleic Acids. 2008; 27:608–619. [40] Liebman SE, Taylor JG, Bushinsky DA. Uric acid nephrolithiasis. Curr Rheumatol Rep. 2007; 9:251–257. [41] Terkeltaub R, Bushinsky DA, Becker MA. Recent developments in our understanding of the renal basis of hyperuricemia and the development of novel antihyperuricemic therapeutics. Arthritis Res Ther. 2006;8(Suppl 1):S4. [42] Roddy E, Doherty M. Epidemiology of gout. Arthritis Res Ther. 2010; 12:223. [43] Mount DB, Kwon CY, Zandi-Nejad K. Renal urate transport. Rheum Dis Clin North Am. 2006; 32:313–331. [44] Ejaz AA, Mu W, Kang DH, Roncal C, Sautin YY, Henderson G, Tabah-Fisch I, Keller B, Beaver TM, Nakagawa T, Johnson RJ, Could uric acid have a role in acute renal failure? Clin J Am Soc Nephrol. 2007; 2:16–21. [45] Richette P, Bardin T, Gout Lancet. 2010. pp. 318–328. [46] Manfredi JP, Holmes EW. Purine salvage pathways in myocardium. Annu Rev Physiol. 1985; 47:691–705. [47] Watts RW. Uric acid production with particular reference to the role of xanthine oxidase and its inhibition. Proc R
Soc Med. 1966; 59:287–292. [48] Emmerson BT. The management of gout. N Engl J Med. 1996; 334:445–451. [49] Chen JH, Chuang SY, Chen HJ, Yeh WT, Pan WH. Serum uric acid level as an independent risk factor for all-cause, cardiovascular, and ischemic stroke mortality: a Chinese cohort study. Arthritis Rheum. 2009; 61:225–232. [50] Kim SY, Guevara JP, Kim KM, Choi HK, Heitjan DF, Albert DA. Hyperuricemia and risk of stroke: a systematic review and meta-analysis. Arthritis Rheum. 2009; 61:885–892. [51] Chen LY, Zhu WH, Chen ZW, Dai HL, Ren JJ, Chen JH, Chen LQ, Fang LZ. Relationship between hyperuricemia and metabolic syndrome. J Zhejiang Univ Sci B. 2007; 8:593–598. [52] Facchini F, Chen YD, Hollenbeck CB, Reaven GM. Relationship between resistance to insulin-mediated glucose uptake, urinary uric acid clearance, and plasma uric acid concentration. Jama. 1991; 266:3008–3011. [53] Clausen JO, Borch-Johnsen K, Ibsen H, Pedersen O. Analysis of the relationship between fasting serum uric acid and the insulin sensitivity index in a population-based sample of 380 young healthy Caucasians. Eur J Endocrinol. 1998; 138:63–69. [54] Beavers KM, Beavers DP, Serra MC, Bowden RG, Wilson RL. Low relative skeletal muscle mass indicative of sarcopenia is associated with elevations in serum uric acid levels: Findings from NHANES III. Journal of Nutrition, Health and Aging. 2009; 13:177–182. [55] Kanellis J, Kang DH. Uric acid as a mediator of endothelial dysfunction, inflammation, and vascular disease. Semin Nephrol. 2005; 25:39–42. [56] Baillie JK, Bates MG, Thompson AA, Waring WS, Partridge RW, Schnopp MF, Simpson A, Gulliver-Sloan F, Maxwell SR, Webb DJ. Endogenous urate production augments plasma antioxidant capacity in healthy lowland subjects exposed to high altitude. Chest. 2007; 131:1473–1478. [57] Ma YS, Stone WL, LeClair IO. The effects of vitamin C and urate on the oxidation kinetics of human low-density lipoprotein. Proc Soc Exp Biol Med. 1994; 206:53–59. [58] Hooper DC, Spitsin S, Kean RB, Champion JM, Dickson GM, Chaudhry I, Koprowski H. Uric acid, a natural scavenger of peroxynitrite, in experimental allergic encephalomyelitis and multiple sclerosis. Proc Natl Acad Sci USA. 1998; 95:675–680. [59] Paganoni S, Schwarzschild MA, Urate as a marker of risk and progression of neurodegenerative disease. Neurotherapeutics (2017) 14:148-153. [60] Weisskopf MG, O’Reilly E, Chen H, Schwarzschild MA, Ascherio A, Plasma urate and risk of Parkinson’s disease. Am J Epidemiol2007; 166:561–567. [61] Lu N, Dubreuil M, Zhang Y, et al,Gout and the risk of Alzheimer’s disease: a population-based, BMI-matched cohort study. AnnRheum Dis 2016; 75:547–551. [62] Annanmaki T, Muuronen A,Murros K, Low plasma uric acid level in Parkinson’s disease. Mov Disord 2007; 22:1133–1137. [63] Keizman D, Ish-ShalomM, Berliner S, et al, Low uric acid levels in serum of patients with ALS: further evidence for oxidative stress? J Neurol Sci 2009; 285:95–99. [64] Church WH, Ward VL. Uric acid is reduced in the substantia nigra in Parkinson’s disease: effect on dopamine oxidation. Brain Res Bull 1994; 33:419–425. [65] Zhange Yu, MD, Shuai Zhang, MM, Dongdong Wang, MM, Meng Fan, MM, Fuqiang Gao, MD, Wei Sun, MD, Zirong Li, MD, Shiliang Li, MD, The significance of uric acid in the diagnosis and treatment of Parkinson disease. Medicine (Baltimore). 2017 Nov; 96(45): e8502. [66] Euser SM, A. Hofman R. G. J. Westendorp Monique M. B. Breteler, Serum uric acid and cognitive function and dementia. Brain 132(2008):377-82. [67] Cao B, Wei QQ, Ou R, Yang J, Shang HF, Association of serum uric acid level with cognitive function among patients with multiple system atrophy. J Neurol Sci. 2015 Dec 15; 359(1-2):363-6. [68] Auinger P, Kieburtz K, McDermott MP, The relationship between uric acid levels and Huntington’s disease progression. Mov Disord. 2010 Jan 30; 25(2):224-8. [69] Emmond M, G. Lepage, M. Vanasse, M. Pandolfo, Increased levels of plasma malondialdehyde in Friedreich ataxia. Neurology 55(2000)1752–1753. [70] Tozzi G, M.Nuccetelli, M.LoBello, S. Bernardini, L. Bellincampi, S. Ballerini, et al, Antioxidant enzymes in blood of patients with Friedreich’s ataxia. Arch. Dis. Child. 86 (2002) 376–379. [71] Napoli E, F. Taroni, G. A. Cortopassi, Frataxin, iron-sulfurclusters, heme, ROS, and aging. Antioxid. Redox Signal. 8 (2006) 506–516. [72] Rötig A, P. de Lonlay, D. Chretien, F. Foury, M. Koenig, D. Sidi et al, Aconitase and mitochondrial iron-sulphur protein deficiency in Friedreich ataxia. Nat. Genet. 17 (1997)215–217. [73] Andreadou E, Nikolaou C, Gournaras F, Rentzos M, Boufidou F, Tsoutsou A, Zournas C, Zissimopoulos V, Vassilopoulos D, Serum uric acid levels in patients with Parkinson’s disease: their relationship to treatment and disease duration. Clin Neurol Neurosurg.2009 Nov; 111(9):724-8. [74] R.F. Butterworth, D. Shapcott, S. Melançon, G. Breton, G. Geoffroy, B. Lemieux et al, Clinical laboratory findings in Friedreich’s ataxia, Can. J. Neurol. Sci. 3 (4) (1976 Nov) 355–359. [75] Schirinzi T, Vasco G, Zanni G, Petrillo S, Piemonte F, Castelli E, Bertini ES, Serum uric acid in Friedreich Ataxia. Clin Biochem. 2018 Apr; 54: 139-141. [76] Liu L, Lou S, Xu K, Meng Z, Zhang Q, Song K, Relationship between lifestyle choices and hyperuricemia in Chinese men and women. Clin Rheumatol. 2013; 32:233–239. [77] Tanaka K, Ogata S, Tanaka H, Omura K, Honda C, The relationship between body mass index and uric acid: a study on Japanese adult twins. Osaka Twin Research Group and Kazuo Hayakawa Environ Health Prev Med. 2015 Sep; 20(5): 347–353. [78] Hu W, Hao H, Yu W, Wu X, Zhou H, Association of elevated glycosylated hemoglobin A1c with hyperfiltration in a middle-aged and elderly Chinese population with prediabetes or newly diagnosed diabetes: across-sectional study. BMC Endocr Disord. 2015 Sep 12;15:47 [79] Nishida Y, Relation between creatinine and uric acid excretion. Annals of the Rheumatic Diseases 1992; 51: 101-102. [80] Lewis JG, Gardner JE, The relation of serum uric acid to haemoglobin level in patients with cardiac and respiratory disease. J Clin Pathol. 1960 Nov; 13:502-5.
To cite this abstract in AMA style:
A. Trinchillo, A. de Rosa, F. Saccà. Role of Uric Acid in Friedreich Ataxia neurodegeneration [abstract]. Mov Disord. 2021; 36 (suppl 1). https://www.mdsabstracts.org/abstract/role-of-uric-acid-in-friedreich-ataxia-neurodegeneration/. Accessed November 22, 2024.« Back to MDS Virtual Congress 2021
MDS Abstracts - https://www.mdsabstracts.org/abstract/role-of-uric-acid-in-friedreich-ataxia-neurodegeneration/